Транзистор — полезный и практичный компонент, который можно использовать для создания множества интересных проектов. В этом практическом руководстве вы узнаете, как работают транзисторы, и сможете использовать их в своих будущих схемах.
На самом деле это довольно просто, если вы изучите основы. Мы сосредоточимся на двух наиболее распространенных транзисторах: биполярных и MOSFET.
Транзистор может работать в 2 режимах:
- ключевой режим
- режиме усиления
В ключевом режиме транзистор работает как электронный переключатель. Он может включать и выключать ток. Проще всего представить себе транзистор как реле без каких-либо движущихся частей. Транзистор похож на реле в том смысле, что вы можете использовать его для включения и выключения чего-либо.
В режиме усиления транзистор может быть включен частично и это режим работы полезен при усилении слабого сигнала.
Как работают биполярные транзисторы
Начнем с классического биполярного NPN транзистора. У него три вывода:
ТРИ схемы включения транзистора.Общий эмиттер,коллектор и база.Как это работает
- База (b — base)
- Коллектор (c — collector)
- Эмиттер (e — emitter)
Когда транзистор включен, то через него может течь ток от коллектора к эмиттеру. Когда он выключен, ток не течет. В приведенном ниже примере транзистор выключен. Это означает, что через него не может протекать ток, поэтому светодиод не светиться.
Чтобы включить транзистор, вам необходимо подать напряжение около 0,7 В на базу относительно эмиттера. Если бы у вас была батарея 0,7 В вы могли бы подключить ее между базой и эмиттером и транзистор бы включился. Поскольку у большинства из нас нет батареи с напряжением 0,7 В, то как мы можем включить транзистор?
Легко! Переход транзистора база-эмиттер работает как диод. Диод имеет прямое напряжение, которое он «берет» из имеющегося напряжения питания. Если вы последовательно подключите резистор, то остальная часть напряжения упадет на резисторе. Таким образом, вы автоматически получите около 0,7 В, добавив всего один резистор.
Это тот же принцип используется для ограничения тока через светодиод, чтобы он не сгорел.
Если вы еще добавите кнопку, то вы можете управлять транзистором и, следовательно, светодиодом, включая и выключая его с помощью кнопки:
Выбор номиналов компонентов схемы
Чтобы выбрать необходимые номиналы компонентов, вам нужно знать еще один важный параметр транзистора — коэффициент усиления.
Когда ток течет от базы к эмиттеру, транзистор включается, так что больший ток может течь от коллектора к эмиттеру.
Схемы включения ТРАНЗИСТОРА. Общий эмиттер, общий коллектор, общая база.
Между величинами этих двух токов существует связь. Это называется усилением транзистора. Для транзистора общего назначения, такого как BC547 или 2N3904 коэффициент усиления составляет в среднем около 100. Это означает, что если вы подадите ток 0,1 мА на переход база-эмиттер, то по направлению коллектор-эмиттер вы получите ток 10 мА (в 100 раз больше).
Какое должно быть сопротивление резистора R1, чтобы получить ток 0,1 мА?
Если у нас в качестве источника питания батарея 9 В и мы знаем что падение напряжения на переходе база-эмиттер составляет 0,7 В, то на резисторе останется 8,3 В. Чтобы найти сопротивление резистора вы можете использовать закон Ома:
То есть вам необходимо использовать резистор сопротивлением 83 кОм. Это не стандартное значение, поэтому из стандартного номинального ряда возьмем самое близкое значение равное 82 кОм.
Резистор R2 предназначен для ограничения тока, проходящего через светодиод. Сопротивление 1 кОм будет достаточным.
Как подобрать транзистор
NPN-транзистор является наиболее распространенным типом биполярных транзисторов. Но есть еще один тип биполярного транзистора — PNP-транзистор, который работает точно также как и NPN-транзистор, только все токи идут в противоположном направлении.
При выборе транзистора важно учитывать, какой ток транзистор может пропустить через себя без повреждения. Это называется током коллектора (Ic ).
Как работает MOSFET транзистор
MOSFET транзистор (полевой транзистор) — еще один очень распространенный тип транзистора. Он также имеет три вывода:
- Затвор (G — gate )
- Исток (S — source )
- Сток (D — drain )
N-канальный MOSFET работает также как и биполярный NPN-транзистор, но с одним важным отличием:
- В биполярном NPN транзисторе ток, протекающий через переход база-эмиттер определяет силу тока, текущего через переход коллектор-эмиттер.
- В MOSFET транзисторе напряжение между затвором и истоком определяет, какой ток будет течь от стока к истоку.
Вот почему для MOSFET транзистора вам не нужен резистор, включенный последовательно с затвором, как в случае с NPN-транзистором. Вместо этого вам понадобится резистор, подключенный между затвором и минусом питания, чтобы надежно отключить транзистор, когда кнопка не нажата:
Поскольку напряжение на затворе определяет, сколько тока может протекать от стока к истоку, вы можете подумать о добавлении резистора последовательно с кнопкой. Таким образом, у вас получиться делитель напряжения, с помощью которого вы можете выставить точное напряжение на затворе.
Как выбрать MOSFET-транзистор
В приведенном выше примере используется N-канальный полевой транзистор. Полевые транзисторы с P-каналом работают так же, только ток течет в противоположном направлении, а напряжение затвор-исток должно быть отрицательным.
На выбор доступны тысячи различных полевых транзисторов. Но если вы хотите построить схему, приведенную выше, то вы можете применить BS170 или IRF510.
При выборе полевого транзистора следует учитывать две вещи:
- Пороговое напряжение затвор-исток. Для включения транзистора требуется более высокое напряжение.
- Непрерывный ток стока. Это максимальный ток, который может протекать через транзистор.
Есть и другие важные параметры, о которых следует помнить, в зависимости от области применения. Но это выходит за рамки данной статьи. Помните об этих двух параметрах, и у вас будет хорошая отправная точка.
Зачем нужен транзистор?
У меня часто возникает вопрос: зачем нам транзистор? Почему бы не подключить светодиод и резистор напрямую к батарее?
Преимущество транзистора заключается в том, что вы можете использовать небольшой ток или напряжение для управления гораздо большим током и напряжением.
Это очень полезно, если вы хотите управлять такими вещами, как двигатели, мощные светодиоды, динамики, реле и многое другое при помощи микроконтроллера / Raspberry Pi / Arduino. Выход микроконтроллера может обеспечить всего несколько миллиампер при напряжении 5 В. Поэтому, если вы хотите управлять, например уличным освещением 230 В, вы не можете сделать это напрямую микроконтроллером
Вместо этого вы можете использовать реле. Но даже реле обычно требует большего тока, чем может обеспечить выход микроконтроллера. Поэтому вам понадобится транзистор для управления реле:
Транзистор как усилитель
Транзистор также может работать в качестве усилителя слабых сигналов, то есть он может находиться в любом положении между «полностью включено» и «полностью выключено».
Это означает, что слабый сигнал может управлять транзистором и создать более сильную копию этого сигнала на переходе коллектор-эмиттер (или сток-исток). Таким образом, транзистор может усиливать слабые сигналы.
Вот простой усилитель для управления динамиком сигналом прямоугольной формы:
Источник: fornk.ru
«Умный» ключ управления нагрузкой на транзисторе МОСФЕТ
Статья предназначается для радиолюбителей, которые занимаются собственной разработкой электронных схем. В современных электронных схемах стали часто применяться так называемые интеллектуальные ключи, коммутаторы, драйверы управления нагрузкой. Эти устройства должны работать в широком диапазоне токов нагрузки, от десятков миллиампер до десятков ампер. Они должны быть защищены от коротких замыканий в цепях нагрузки и иметь возможность анализировать свою работу. Схема такого «умного» коммутатора нагрузки показана на рисунке 1.
В данной схеме я специально не привожу конкретных наименований радиокомпонентов. Их выбор зависит от параметров, которые вы заложите в данную схему. Напряжение питания схемы может быть и больше 12 вольт, например 24 вольта, но тогда потребуется стабилизатор напряжения питания микроконтроллера, с входным напряжением не ниже 24В, например, LM7805.
LM7805 Datasheet, PDF
При напряжении питания 12В подойдет КР142ЕН5А. Для примера в схеме указан микроконтроллер PIC12F675, но естественно можно применить любой микроконтроллер. Транзистор применен полевой с каналом типа Р. Оптрон тоже любой, например РС817.
PC817 Datasheet, PDF
Алгоритм работы схемы
В подпрограмме начальной установки конфигурации микроконтроллера вывод GP2 должен быть сконфигурирован на вход. При этом он будет иметь высокоимпедансное состояние. То есть, ни какого влияния на схему ключа микроконтроллер оказывать не будет. Теперь предположим, программа добралась до того места, где надо подать напряжение на определенную нагрузку.
Для этого переключаем вывод GP2 на вывод и формируем на нем импульс отрицательной полярности, длительность которого зависит от инертности оптрона. И так, на выводе GP2 появляется «0», т.е. микроконтроллер выводом GP2 прижимает левый вывод резистора R2 к минусовой шине.
Таким образом, с минуса источника питания через этот резистор и резистор R3 на затвор мощного ключевого транзистора подается открывающее напряжение. Транзистор открывается, на его стоке появляется напряжение, начинает светиться светодиод оптрона, который является в этой схеме цепью положительной обратной связи.
Далее открывается транзистор оптрона и шунтирует собой первичную цепь включения. Точка соединения резисторов R2,R3 окажется прижатой к минусу ИП. Ключ остается во включенном состоянии уже без участия контроллера. Теперь можно вывод GP2 опять перевести в высокоимпедансное состояние.
При этом на левом выводе резистора R2 и на выводе GP2, «0» останется, запомните это состояние, оно нам пригодиться. В таком состоянии схема может находиться сколь угодно долго. Импульс отрицательной полярности формирует не сам контроллер, а он получается на его выводе, т.к. резисторы R1,R3 и R2, являются в данном случае подтягивающими этот вывод к шине питания +5В.
Когда этот вывод имеет высокоимпедансное состояние, на нем присутствует напряжение питания 5В. Когда вывод перенастроен на вывод нуля, на нем естественно будет «0», после перенастройки на «ввод», на нем опять будет напряжение 5 вольт. После того, как схема ключа самозаблокировалась, мы не просто переключаем вывод GP2 на ввод, но и конфигурируем его, как вход INT. Но об этом чуть позже.
Не трудно заметить, что эта схема ключа имеет защиту от коротких замыканий. Если в цепи питания нагрузки произойдет режим КЗ, то исчезнет напряжение на светодиоде оптрона, закроется транзистор оптрона. Закроется ключевой транзистор, нагрузка обесточится и вывод GP2 опять подтянется к шине питания 5В.
Выше по тексту мы запоминали, что при нормальной работе нагрузки на выводе GP2 был «0». Но так как вывод GP2 настроен, как канал ввода с прерыванием по изменению уровня входного сигнала, прерывание мы разрешили по положительному перепаду напряжения, то контроллер незамедлительно отреагирует на проблемы в нагрузке и примет соответствующее решение.
Таким образом, после включения напряжения питания нагрузки, контроллер продолжает заниматься уготовленными ему делами и в это же время всегда находится в курсе, в каком состоянии находится подключенная нагрузка. Еще один большой плюс этой схемы, это использование все одного вывода контроллера. На этом пока все. Удачи. К.В.Ю.
Источник: www.kondratev-v.ru
РАДИОЛЮБИТЕЛЬСКИЕ СХЕМЫ
Эта схема представляет собой простейший несимметричный мультивибратор, что приводит к прерывистому свечению светодиода. Частота вспышек светодиода определяется частотой генерации мультивибратора.
При включении источника питания ток коллектора транзистора VТ 2 скачком изменится от нуля, до начального значения, которое определяется резисторами R 1, R 2 и коэффициентом h 21э транзисторов VТ 1, VТ 2. Силу начального тока коллектора VТ 2, устанавливают подбором резистора R 2, при отключенном конденсаторе C 1. При этом светодиод еще не должен светиться. Подбор начинают со значений сопротивления R 1, при котором светодиод светится, затем увеличивают сопротивление R 1, до погасания светодиода.
Подбором конденсатора C 1, добиваются требуемой частоты миганий. Номиналы резисторов, могут отличаться от указанных на схеме, на +, — 10%. Транзисторы маломощные группы МП, вместо МП41, можно ставить МП39, МП42, с любым буквенным индексом. В место МП37 можно ставить МП10, МП38. Светодиод можно применить любой имеющийся в продаже.
Схема неоднократно проверенна на работоспособность и если она правильно собрана, начинает работать сразу. Применить данную схему можно как сигнальное устройство, или как эмитатор сигнализационного устройства в автомобиле и дома.
Мигалка на двух светодиодах
Описание схемы
Эта схема представляет собой симметричный мультивибратор, частота которого зависит от номиналов конденсаторов С1, С2, а так же от резисторов R 1, R 2. Частота поочередного мигания светодиодов соответственно, зависит от частоты мультивибратора которую в свою очередь можно менять подбором конденсаторов С1, С2 и резисторов R 1, R 2. Транзисторы VT 1, VT 2, группы МП и могут быть МП39, МП40, МП41, МП42, с любым буквенным индексом. Светодиоды могут быть любые, кроме инфракрасных. Схема проста в изготовлении, неоднократно проверена на работоспособность и при правильной сборке начинает работать сразу при подаче питания. Применяться данная схема может как элемент световой индикации в различных устройствах.
Простой генератор звуковой частоты
Описание схемы
Генератор начинает работать при напряжении в несколько десятых долей вольта, даже с транзистором с малым статическим коэффициентом. Генерация возникает при нажатии кнопки S1, из — за действия сильной положительной обратной связи между коллектором и базой. R1 устанавливает нужную громкость и тональность звука. Трансформатор Т1 — от любого транзисторного малогабаритного радиоприемника. В качестве головных телефонов можно применить любые высокоомные телефоны типа ТМ — 2А, в крайнем случае подойдут и капсуля типа ДЭМ — 4М.
Электронная сирена
Описание схемы
При нажатии кнопки S 1, заряжается конденсатор С1. Разряжается конденсатор С1 через делитель напряжения на резисторах R 2, R 3, подключенного в цепь базы транзистора VT 1. Поскольку напряжение на конденсаторе С1, падает по мере его разрядки, то происходит уменьшение напряжения смещения на базе транзистора VT 1, в результате чего изменяется частота звучания.
Из динамической головки слышен звук напоминающий вой серены. Транзистор VT 1, можно заменить на КТ315, КТ3102 с любым буквенным индексом. Транзистор VT 2, можно заменить на КТ837 с любым буквенным индексом. При сборки схемы особое внимание уделить правильности подключения кнопки.
Несмотря на простоту схемы, почему то, именно подключение кнопки часто путают, в результате имитации серены не происходит, а слышен только обычный звуковой тон определенной частоты. Схема неоднократно проверена на работоспособность, при номиналах радиодеталей указанных на схеме и безошибочной сборке начинает работать сразу.
Двухтональный звонок
Описание схемы
Звонок состоит из двух генераторов, генератора тона, выполненного на транзисторах V 3, V 4 и симметричного мультивибратора V 1, V 2. Как известно при работе мультивибратора его транзисторы поочередно закрываются и открываются. Это свойство и использовано для управления частотой генератора тона.
Выход мультивибратора соединен с генератором тона через резистор R 5 поэтому он будет периодически подключаться к общему проводу (к плюсу источника питания), т.е. параллельно резистору R 7. При этом частота генератора будет изменяться скачком, при закрытом транзисторе из динамической головки B 1, будет слышен звук одного тона, при открытом – другого. Конденсаторы С2, С3, защищают мультивибратор от импульсов, проникающих от генератора тона.
При отсутствии конденсаторов частота мультивибратора будет изменяться, что приведет к появлению неприятных тонов в звучании звонка. В место указанных на схеме, можно применить любые другие маломощные низкочастотные германиевые транзисторы соответствующей структуры. Конденсаторы могут отличаться от номинала указанного в схеме на +,- 10%.
Динамическая головка В1 любая, мощностью 1-2 Вт. и сопротивлением звуковой катушки постоянному току 4-10 Ом. В место конденсаторов С2, С3, можно установить один электролитический неполярный конденсатор на 1, 2 Мкф. на номинальное напряжение не ниже 6в. Детали звонка можно смонтировать на печатной плате из фольгированного гетинакса или стеклотекстолита. Схема неоднократно проверена на работоспособность, при номиналах радиоэлементов указанных на схеме и безошибочной сборки наладки не требует.
Рисунок печатной платы
Телеграфный тренажер на ИМС К155ЛА3
Описание схемы
Предлагаемый телеграфный тренажер достаточно прост в изготовлении, и предназначен для самостоятельного изучения телеграфной азбуки. Кнопкой S1 служит механический телеграфный ключ. Уст — во состоит из 4 — х элементов 2И — НЕ микросхемы К155ЛА3. Элементы DD1.1, DD1.2, DD1.3, образуют генератор импульсов, следующих с частотой 1000Гц. Элемент DD1.4, является буферным.
С помощью резистора R1 подстраивают частоту генератора. В качестве источника питания может быть, маломощный блок питания напряжением 5в.
Простой регулируемый блок питания
Конструкции на транзисторах требуют для своего питания постоянное напряжение определенной величины, 1,5В, 3 В, 4,5 В, 9 В и 12 В. Чтобы во время проверки и налаживания собираемых схем, не расходовать напрасно средства на преобретение гальванических элементов и батарей, воспользуйтесь универсальным блоком питания работающим от сети переменного тока и позволяющим получить любое постоянное напряжение. Схема такого блока приведена на рисунке. Его выходное напряжение можно плавно изменять от 0,5 до 12 В. Причем оно будет оставаться стабильным не только при изменении сетевого напряжения, но и при изменении тока нагрузки от нескольких миллиампер до 0,3 А. Кроме того, блок питания не боится коротких замыканий в цепи нагрузки, которые нередки в практике радиолюбителя.
Познакомимся подробнее с работой блока питания. Включается он в сеть с помощью двухполюсной вилки ХР1. При замыкании контактов выключателя SA1 сетевое напряжение подается на первичную обмотку понижающего трансформатора Т1. На выводах вторичной обмотки появляется переменное напряжение, значительно меньшее, чем сетевое.
Оно выпрямляется диодами VD1 — VD4, включенными по так называемой мостовой схеме. Чтобы выпрямленное напряжение было такое же стабильное, как напряжение батареи гальванических элементов, на выходе выпрямителя стоит электролитический конденсатор С1 большой емкости.
Выпрямленное напряжение подается на несколько цепей: R1, VD5, VT1, R2, VD6, R3; VT2, VT3, R4, (R2, VD6) — это стабилитрон с балластным резистором. Они составляют параметрический стабилизатор.
Как мы уже говорили выше, независимо от колебаний выпрямленного напряжения на стабилитроне VD6 будет строго определенное напряжение, равное напряжению стабилизации данного типа стабилитрона (в нашем случае от 11,5 до 14 В). Параллельно стабилитрону включен переменный резистор R 3, с помощью которого и устанавливают нужное выходное напряжение блока питания.
Чем ближе к верхнему выводу находится движок резистора, тем больше выходное напряжение. С движка переменного резистора напряжение подается на усилительный каскад, собранный на транзисторах VT2 и VT3. Можно считать, что это усилитель мощности, обеспечивающий нужный ток через нагрузку при заданном выходном напряжении. Резистор R5 имитирует нагрузку блока питания, когда к зажимам ХТ1 и ХТ2 ничего не подключено. Напряжение на нем почти равно напряжению между движком переменного резистора и общим проводом (зажим ХТ2). Чтобы можно было контролировать выходное напряжение, в блок введен вольтметр, составленный из микроамперметра и добавочного резистора R 6.
Примечание: Выпрямительные диоды, диодного моста VD1 — VD4 можно заменить на более современные типа КД226 которые расчитаны на обратное напряжение более 250В или импортные аналоги. Транзисторы VT1, VT2 можно заменить на КТ361 или импортные аналоги. Транзистор VT3 можно заменить на КТ837 с любой буквой, что даже облегчит его монтаж на теплоотводе.
В качестве теплоотвода подойдет дюралевая или алюминиевая пластина толщиной 2мм., ширина 40мм., высота 60мм. Монтаж радиоэлементов осуществляют на печатной плате из стеклотекстолита, хотя есть примеры что для начала монтажную плату изготавливали из плотного картона. Вся конструкция помещается в корпус из диэлектрического материала (пластмасс, пластик и т.д.).
Монтаж транзистора VT3 на теплоотводе.
При сборке нужно быть внимательным и осторожным т.к. здесь на первичной обмотке трансформатора, присутсвует напряжение опасное для жизни 220в.
Схема бестрансформаторного двухтактного УНЧ
Описание схемы
Простой бестрансформаторный двухтактный усилитель мощностью 1.5 Вт..Высокочастотный транзистор П416 применен здесь из соображения как можно больше снизить шумы входного каскада, потому как помимо того что он высокочастотный, он еще и малошумящий.
Практически его можно заменить на МП39 — 42, с ухудшением шумовых характеристик соответственно или на кремниевые транзисторы КТ361 или КТ3107 с любой буквой.. Для предотвращения искажений типа «ступенька», между базами VT2, VT3, фазоинверсного каскада включен диод VD1 — Д9, с любой буквой, благодаря чему на базах транзисторов образуется напряжение смещения. Напряжение в средней точке (минусовой вывод конденсатора С2) будет равно 4,5в. Его устанавливают подбором резисторов R2, R4. Максимально допустимое рабочее напряжение конденсатора С2 может быть 6в.
Источник: www.untehdon.ru