История развития аналитических инструментов и приложений ведет свое начало с 80-х годов прошлого века. Последние два десятка лет — в период реально массового присутствия этого ПО на отечественном рынке — прослеживается своего рода эффект маятника: внимание потребителей смещается то в сторону средств бизнес-анализа (Business Intelligence, BI), то к приложениям для бизнес-аналитики (Business Analytics, BA). Так, в начале 2000-х популярность стремительно набирали инструменты бизнес-анализа, результатом консолидации рынка в 2003-2005 годы стали BI-платформы, объединившие средства для построения хранилищ данных, их анализа и подготовки отчетов.
Первая волна BI-проектов оказалась «сырой» и потерпела фиаско. Потом настал черед BA-приложений, но их «взлет» остановил финансовый кризис 2008 года. Затем тема самообслуживания в аналитике возродила интерес к BI, который, увы, разбился о сложность «повзрослевших» и набравших сложность инструментальных платформ.
Сегодня в фокусе вновь данные и бизнес-аналитика, позволяющая извлекать из них полезную информацию для разных категорий потребителей. Наряду с традиционными BA-приложениями для планирования и бюджетирования, управления прибыльностью, рисками, подготовки аналитической, управленческой и финансовой отчетности востребованы прикладные интеллектуальные алгоритмы анализа данных. Вместе с тем количество провалов при внедрении аналитических технологий все эти годы практически не сокращается.
Аналитические системы. Примеры применения в бизнесе
![]()
Наступает эпоха аналитики
Тема данных и аналитики очень популярна. СМИ изобилуют красочными рассказами о возможностях, которые сулят «наука о данных» (машинное обучение, глубокое обучение) и ее венец — искусственный интеллект (ИИ).
Ажиотаж вокруг них имеет веские материальные основания. Например, по прогнозу McKinsey Global Institute, потенциальная польза от применения идей ИИ может составить около $3,5-5,8 триллионов ежегодно. Совместное использование ИИ и традиционных аналитических технологий способно дать прирост в экономической эффективности на 62%: в туризме — на 128%, в ритейле — на 87%, в сельском хозяйстве — на 55%, в банках — на 50%, в телекоммуникациях — 44%, в страховании — на 38%.
В подтверждение — немного «отрезвляющей» статистики. Полтора года назад консалтинговая фирма KPMG опросила свыше тысячи генеральных директоров. Выяснилось, что более половины из них не уверены в отчетных данных, на основании которых принимают решения.
Почему мы заговорили о хранилище данных
Система бизнес-аналитики — это «два в одном»: аналитические приложения опираются на корпоративное хранилище данных (далее — ХД), или как его еще образно называют «единый источник правды». В идеале ХД служит источником выверенной информации, на основании которого решаются самые разные задачи в области бизнес-аналитики: планирование, бюджетирование и прогнозирование, управление доходностью, и готовится разнообразная отчетность: аналитическая, управленческая, МСФО, для органов надзора.
Управление данными в бизнесе. Как организовать аналитическую фабрику в компании.
Но это в идеале. По данным аналитиков Gartner , еще в 2005 году более 50% проектов построения ХД считались неудачными. На сегодняшний момент ситуация мало изменилась — по оценке экспертов из McKinsey, только 20% банков, с которыми они работали, сумели построить ХД. Статистика в отечественном финансовом секторе не менее печальная — по нашим оценкам 38% проектов построения ХД, о которых на протяжении последних 15 лет громко заявляли банки и поставщики ПО, потерпели сокрушительный провал; и это без учета ситуации в кредитных организациях, прекративших свое существование в результате отзыва лицензий.
Несмотря на кажущуюся заурядность ХД, модным нынче технологиям без них просто не обойтись. В финансовой отрасли, например, консультанты EY прогнозируют применение программ-роботов для выполнения регуляторного анализа отчетных данных. Подготовка этих данных перед отправкой в регуляторные органы – прямое назначение ХД.
![]()
Как не завалить проект внедрения аналитической системы
Понятно, что печальную статистику нужно улучшать, если мы хотим попасть в светлое цифровое будущее.
Предлагаем чек-лист рецептов, на что обратить внимание, чтобы не завалить проект внедрения ХД и автоматизации на основе различных задач бизнес-аналитики. Предложенные ниже рекомендации опираются на опыт работы компании автора в финансовом секторе. Несомненно, существуют отраслевые нюансы, но в целом его можно перенести и на другие отрасли. Финансовую вертикаль принято считать одной из наиболее продвинутых в освоении ИТ, поэтому будет интересно, услышать комментарии экспертов из других отраслей.
Помните: что посеешь, то и пожнешь
Наиболее часто в зарубежной прессе пишут о низком качестве исходных данных — GIGO (сокр. от англ. garbage in – garbage out) или по-русски «что посеешь, то и пожнешь» – как о главном препятствии к успешному внедрению ХД. В российской практике сложности с качеством данных также имеют место, но, по опыту, скорее могут привести к затягиванию проекта и перерасходу бюджета, чем к краху.
Для признания проекта неудачным это, строго говоря, недостаточно веские причины. Тем не менее, вот совет, как победить проблемы с качеством данных.
Нужно исходить из того, получение надлежащего качества данных не является разовой задачей и решать ее следует комплексно. Поэтому целесообразно построить собственную экспертизу в управлении данными — в дополнение к модулям контроля и обогащения данных, поставляемым в составе ХД, запросить у поставщика постановку технологии по обеспечению качества данных, а внутри организации создать специальное подразделение — службу качества данных, которое будет следить за ее исполнением. По такому пути, например, пошел при создании ХД Банк «Санкт-Петербург», что, по оценке его представителей, позволило существенно снизить количество ошибок в данных (в одном только кредитном портфеле в 15 раз), повысить доверие к данным, а вместе с ним и качество управленческих решений.
Не ставьте пятое колесо в телегу
Если инициатива по построению ХД не подкреплена объективными бизнес-потребностями, такой проект обречен. Подобная ситуация может возникнуть, например, если при решении о его создании реалии бизнеса пытаются подогнать под чужой опыт, который на самом деле успешен при многих прочих отличных условиях. Например, внедрение ХД не оправдано, если объем данных невелик и вполне может обрабатываться с помощью привычных электронных таблиц. В итоге ХД станет дорогим колесом от иномарки, но пятым и в телеге.
Рекомендация построить ХД может присутствовать и в высокоуровневой ИТ-стратегии, предписанной именитыми консультантами. Старт такого проекта в отрыве от интересов конечных потребителей чреват тем, что ИТ-служба организует наполнение ХД данными, не ориентируясь на решение конкретных прикладных задач. Такой процесс без результата очевидно не оправдает вложенных в него денег, финансирование прекратится и проект будет заморожен.
![]()
Совет здесь может быть только один — не начинайте проект, если он не опирается на реальные бизнес-потребности. Инструментальная платформа ХД в отрыве от приложений для бизнес-аналитики не принесет большой пользы. В идеале на входе в проект сделайте прогноз качественных и количественных выгод от решения реальных прикладных задач и окупаемости. Например, исходя и своего проектного опыта мы прогнозируем, что на каждом цикле подготовки управленческой отчетности на основе ХД экономия от автоматизации может достигать одного миллиона рублей.
Среди наиболее часто встречающихся целей внедрения бизнес-аналитики в банках можно назвать обеспечение доверия к данным, повышение точности и гранулярности управленческой отчетности, сокращение трудоемкости и сроков ее подготовки, автоматизация методик аллокаций расходов, трансфертного управления ресурсами и функционально-стоимостного анализа, переход к самостоятельному расчету произвольных аналитических показателей.
Так, в московском Новикомбанке после внедрения системы управления эффективностью отчетность по финансовому результату готовится с учетом трансфертной стоимости ресурсов и разнесения накладных расходов по подразделениям, точкам продаж и клиентам. Казахстанский Банк «ЦентрКредит» добился адекватной обоснованной оценки результативности бизнес-направлений, себестоимости банковских продуктов и рентабельности клиентов и клиентских сегментов.
С помощью информационно-аналитической системы банк перешел на ежедневный режим подготовки управленческой отчетности, существенно сократив сроки расчета финансового плана и управленческого баланса. После внедрения сервиса самообслуживания в бизнес-аналитике Банк Казани централизировал в одном подразделении подготовку управленческой аналитики для всех служб и сотрудников. Используя для подготовки отчетности единое корпоративное ХД, в банке обеспечили согласованность показателей эффективности, применяемых для контроля различных бизнес-направлений на всех уровнях управления.
Избегайте иллюзорных обещаний
Каждый программный продукт имеет четко очерченные рамки применения и соответствующую архитектуру. Архитектура ХД ориентирована на быстрое извлечение информации из массива собранных данных, расчет показателей и представление полезной информации в виде отчетов.
Агрессивный маркетинг и продажи — на кону контракт с шестью нулями — подчас приводят к тому, что заказчики приобретают для создания аналитических систем программные платформы, архитектурно далекие от ХД. Так, под лозунгом «два в одном» в комплекте с основной учетной системой может поставляться псевдо ХД, которое на поверку оказывается копией АБС. При такой конфигурации клон АБС искусственно освобождается от обработки транзакций, но это не меняет его архитектуру — она по-прежнему не оптимизирована для решения аналитических задач, как минимум, не позволяет быстро получать ответы на произвольные запросы к данным, что является ключевым требованием к инструментам бизнес-аналитики.
![]()
На практике нередки случаи, когда ХД пытаются строить с помощью инструментов интеграции данных. Такое хранилище является промежуточным оперативным складом данных, лишенным отраслевой модели и обязательного для «правильного» ХД набора функциональности: системы контроля качества данных, управления метаданными, бизнес-логики. Жизнь такого ХД скоротечна — подготовка более-менее сложного нового отчета потребует реинжиниринга и индивидуальной разработки, то есть фактически финансирования и реализации нового проекта с нуля.
Чтобы не стать жертвой иллюзорных обещаний, стоит взять в штат ИТ-архитектора с успешным опытом создания ХД и, полагаясь на его экспертизу, выбирать ПО. Дополнительным подспорьем будет референс-визит к действующим заказчикам поставщика, у которых эксплуатируется ХД для поддержки нескольких прикладных задач. Например, в группе «СМП Банк» решение тендерного комитета о выборе поставщика ХД основывалось на результатах референс-визитов сразу в несколько банков. Более того, старту основного проекта предшествовал пилотный этап, в ходе которого в головном банке группы были опробованы основные механизмы ПО для создания ХД и автоматизации управленческой и аналитической отчетности.
Откажитесь от бесплатного сыра
Наконец, последняя причина — отсутствие адекватного финансирования либо полное его отсутствие. Несмотря на то что без бюджета и проекта быть не может, поставщик может предложить начать внедрение ХД даже бесплатно, чтобы «зайти» в банк, через голову конкурентов, но в последствии, так и не получив «должного» вознаграждения, «бросить» его. Другой случай – когда в условиях урезания всего ИТ-бюджета средства на развитие уже созданного ХД перестают выделяться, со временем ХД «деградирует» и в конце концов перестает использоваться.
Чтобы не оказаться в «хранилищеловке», заказчику следует выбирать открытое и документированное ПО, в ходе внедрения обучить работе с ним собственных специалистов и даже разделить с вендором часть работ по внедрению, чтобы проверить свои навыки в деле. Это позволит, с одной стороны, оптимизировать бюджет проекта, с другой, застрахует от проблем в случае наступления «трудных времен».
Например, в упомянутой выше группе «СМП Банк» после построения ХД в головном банке работы по загрузке в ХД данных бухгалтерского учета других участников группы — Мособлбанка и Финанс Бизнес Банка — взяли на себя банковские специалисты. В Новикомбанке бизнес-сопровождение управленческой модели в системе расчета финансового результата полностью осуществляется силами финансового управления.
Имея компетенции во внедрении и сопровождении ПО, банк сможет в какой-то период самостоятельно развивать ХД без сопровождения поставщиком. И все же следует помнить, что любое ПО рано или поздно устаревает, и совсем без инвестиций в его развитие не обойтись.
Материалы по теме:
Источник: rb.ru
Использование информационных технологий в аналитической деятельности
В настоящее время предприятия испытывают потребность в расширении аналитических работ, связанных с разработкой перспектив развития организации, комплексной оценкой эффективности применения различных форм хозяйствования, своевременной выработкой оперативных управленческих решений.
Применение информационных технологий повышает эффективность аналитической работы. Это достигается за счет сокращения сроков проведения анализа; более полного охвата влияния факторов на результаты хозяйственной деятельности; замены приближенных или упрощенных расчетов точными вычислениями; постановки и решения новых многомерных задач анализа, практически не выполнимых вручную и традиционными методами.
Комплексная компьютеризация анализа обеспечивает:
— во-первых, сохранение целостности (системности) анализа при условии децентрализованной обработки информации. В теории анализа хозяйственной деятельности уже созданы основы системного комплексного анализа, обеспечивающие функциональную, техническую, методическую и информационную совместимость составных частей анализа как единого целого. Благодаря этому достигаются объективность анализа и его достоверность. В условиях децентрализованной обработки информации целостность анализа не разрушается, не отменяется единство целей и задач анализа с точки зрения его системных свойств. Поэтому можно говорить о том, что развитой сети распределенных баз данных соответствует система распределенных задач хозяйственной деятельности; однако отдельные задачи АХД, промежуточные результаты и т.д., как бы важны они ни были, должны проходить через призму общей системы комплексного анализа, реализующей все частные задачи;
— во-вторых, информационные технологии обеспечивают соединение процесса обработки информации с процессом принятия решения.
— применение вычислительной техники позволяет управляющему решать задачи анализа непосредственно на своем рабочем месте. Он ведет личный контроль над всеми стадиями процесса обработки информации, имеет возможность оценить полученные результаты, грамотно использовать их для обоснования принимаемых решений;
— в-третьих, информационные технологии обеспечивают повышение оперативности и действенности анализа. Компьютерный анализ непосредственно следует за учетом, а также выполняется в ходе хозяйственного учета и, таким образом, превращает подсистему аналитического обеспечения управления хозяйственной деятельностью в постоянно действующий фактор повышения эффективности производства за счет актуализации всего информационного фонда предприятия.
5.3. Организационные аспекты использования информационных технологий
Наиболее эффективной организационной формой использования информационных технологий является создание на их базе автоматизированных рабочих мест бухгалтеров, экономистов, плановиков и т.д. В стране широким фронтом ведутся работы по созданию автоматизированных рабочих мест бухгалтера, плановика и других специалистов. Имеется также некоторый опыт создания автоматизированных рабочих мест аналитика.
Под автоматизированным рабочим местом аналитика понимают профессионально ориентированную малую вычислительную систему, предназначенную для автоматизации работ по анализу хозяйственной деятельности.
Опыт проектирования автоматизированного рабочего места аналитика и других систем позволяет обобщить требования к их функционированию:
— своевременное удовлетворение вычислительных и информационных потребностей экономиста при проведении анализа хозяйственной деятельности;
— минимальное время ответа на аналитические запросы;
— возможность представления выходной информации в табличной и графической форме;
— возможность внесения корректив в методику расчетов и в формы отображения конечного результата;
— повторение процесса решения задачи с любой произвольно заданной точки (стадии) расчета;
— возможность работы в составе вычислительной сети;
— простота освоения приемов работы на компьютере и взаимодействия системы человек-машина.
Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:
Источник: studopedia.ru
Продвинутая бизнес-аналитика как цифровой тренд трансформации бизнеса
В статье рассматриваются основные аспекты перспективного направления технологических трендов глобальной цифровизации и трансформации бизнеса – продвинутой аналитики. Проведен анализ основных принципов трансформации информационно-аналитических систем, а также связанных с ними международных исследований. Предложена новая информационная модель функциональной архитектуры корпоративной информационно-аналитической системы с использованием продвинутой бизнес-аналитики.
Аннотация статьи
цифровизация
продвинутая бизнес-аналитика
цифровая трансформация
управление корпоративной результативностью
Ключевые слова
Дьяконова Яна Константиновна
Технические науки
Конференция
Фундаментальные и прикладные исследования в сфере естествознания и технических наук: гипотезы, идеи, результаты
Поделиться
Цитировать
Процесс глобальной цифровизации экономики кардинальным образом меняет рынки и их структуру, деловые процессы, принципы организации, методы управления предприятием, социально-экономические отношения и общество в целом. В таких высокотехнологичных областях, как ИТ и телекоммуникации, данные тенденции проявляются наиболее отчетливо. Однако стоить отметить, что в ближайшем будущем процессы цифровой трансформации затронут все отрасли, станут глобальными и масштабными.
Согласно исследованию международной консалтинговой компании Arthur D. Little, цифровая трансформация бизнеса является базисом корпоративной стратегии управления на ближайший период [1]. Аналогичного мнения придерживаются и другие аналитические компании, исследующие мировой ИТ-рынок: Gartner, Accenture, IBM, Deloitte.
Таким образом, успешность развития современных предприятий в эпоху цифровой трансформации в значительной степени будет зависеть от масштаба и эффективности внедрения цифровых технологий и инструментов ведения бизнеса, возможности и способности компании адаптироваться к современным технологичным условиям.
Одним из перспективных и интересных направлений развития цифровых трендов трансформации бизнеса является продвинутая аналитика (advanced analytics). Решения класса Advanced Analytics позволяют выполнять более глубокий анализ данных, выявлять закономерности, взаимосвязи и причины событий, прогнозировать будущие результаты. Выделяют несколько видов продвинутой аналитики (рис.1):

Рис. 1. Виды продвинутой аналитики
1. Дескриптивная аналитика предполагает все виды описательной структурированной отчетности, которые используются в областях управления компанией. Основная цель данного вида продвинутой аналитики – выявление, мониторинг проблем и их диагностика на основе данных.
2. Прогнозная аналитика обеспечивает предсказание вариантов развития событий на основе подтвержденных статистических гипотез и взаимосвязей. Данный вид аналитики используют для моделей прогнозирования численности, планирования загрузки, формирования профиля успешного сотрудника, плана мероприятий по повышению вовлеченности сотрудников и др. В данном виде аналитики используются такие методы, как корреляционно-регрессионный и кластерный анализ.
3. Предиктивная аналитика ориентирована на прогнозирование на основе выявления скрытых зависимостей и мультивариантности сценариев и используется для выявления рисков и возможностей будущих событий. Основное отличие данного вида аналитики – работа с большими данными (Big Data). На данном этапе используется машинное обучение, профильные аналитические программы для определения неочевидных зависимостей и построения моделей. Стоит отметить, что предиктивная аналитика использует множество методов интеллектуального анализа данных, статистики, моделирования и искусственного интеллекта.
Таким образом, очевидно, что дальнейшее развитие мирового рынка бизнес-анализа пойдет по пути активного освоения продвинутой аналитики, в том числе – предиктивного анализа, построения симуляторов и вариативных моделей.
В качестве сферы применения предиктивного анализа можно выделить следующие направления деятельности: директ–маркетинг, оценка эффективности рекламных кампаний, в том числе таргетированных рекламных кампаний, разработка моделей диагностики в медицине и др.
4. Цель прескриптивной аналитики – не только прогнозирование и выявление причин, но и предложение вариантов решений в современной динамической среде. Данный вид аналитики предполагает использование искусственных нейронных сетей.
В связи с этим в эпоху цифровой экономики и трансформации бизнеса для предприятий особое значение приобретают качество и скорость информационно-аналитической поддержки. В настоящее время ведущие поставщики бизнес решений (IBM, SAS, SAP) предлагают продвинутые аналитические сервисы и платформы: IBM Watson, Deductor Studio, Tibco, SAS Enterprise Miner и др.
Для реализации задач планирования и анализа большинство современных компаний использует аналитические платформы на основе OLTP и OLAP-систем [2]. Наиболее распространенной в применении корпоративном секторе OLTP-систем является современная ERP-система. К широко применяемым OLAP-системам следует отнести системы бизнес-интеллекта (Business Intelligence), а также системы управления корпоративной результативностью (Corporate performance management systems). Однако стоит отметить, что в современных экономических условиях, базового функционала данных систем уже недостаточно для решения новых цифровых задач [3].
Данные анализа информационно-аналитических платформ и материалы мировых исследовательских компаний позволяют определить в качестве актуальной следующую функциональную архитектуру корпоративной информационно-аналитической системы с использованием продвинутой бизнес-аналитики (рис. 2):

Рис. 2. Функциональная архитектура корпоративной информационно-аналитической системы с использованием продвинутой бизнес-аналитики
Таким образом, участникам цифрового рынка предстоит трансформация ИТ-систем. Также цифровая трансформация бизнеса предполагает переход компании на «цифровое управление», переоценку организационных принципов маркетинга и менеджмента, частичное или полное перестроение бизнес-процессов и их аналитического обеспечения.
Также необходимо понимать, что для эффективной разработки и внедрения информационно-аналитических систем наряду с качественно новыми аналитическими технологиями необходима реализация комплекса проектных работ, связанных с разработкой операционной модели управления и соответствующими изменениями в деловых процессах компании.
В перспективе цифровые информационные системы все в большей мере будут приобретать гибкие адаптивные свойства, опираясь на аналитику больших данных и предиктивный анализ.
Источник: apni.ru
