Теория игр представляет из себя сложное многоаспектное понятие, поэтому представляется невозможным привести толкование теории игр, используя лишь одно определение. Рассмотрим два подхода к определению теории игр [9,c.1].
Теория игр — математический метод изучения оптимальных стратегий в играх. Под игрой понимается процесс, в котором участвуют две и более сторон, ведущих борьбу за реализацию своих интересов. Каждая из сторон имеет свою цель и использует некоторую стратегию, которая может вести к выигрышу или проигрышу — в зависимости от поведения других игроков. Теория игр помогает выбрать лучшие стратегии с учётом представлений о других участниках, их ресурсах и их возможных поступках.[1]
Суть теории игр (с экономической точки зрения) в том, чтобы помочь экономистам понимать и предсказывать то, что может происходить в экономических ситуациях, и сейчас вряд ли можно найти область экономики или дисциплины, связанной с экономикой, где основные концепции теории игр не были бы просто необходимыми для понимания современной экономической литературы. [6]
А. Диксит и Б. Нейлбафф «Теория игр. Искусство стратегического мышления в бизнесе и жизни»
В настоящий момент, если говорить об экономических приложениях, речь идет уже не только о применении теоретико-игровых методов к ставшим достаточно традиционными проблемам теории организации промышленности, но и, по сути дела, ко всему многообразию экономической проблематики. Теорию игр следует понимать как инструмент экономического анализа, который:
1) дает ясный и точный язык исследования различных экономических ситуаций;
2) дает возможность подвергать интуитивные представления проверке на логическую согласованность;
3) помогает проследить путь от «наблюдений» до основополагающих предположений и обнаружить, какие из предположений действительно лежат в основе частных выводов.
При этом, как уже отмечалось выше, в настоящий момент область применения теории игр гораздо шире, чем только экономика. [3]
С помощью теории игр предприятие получает возможность предусмотреть ходы своих партнеров и конкурентов Сложный инструментарий следует использовать только при принятии принципиально важных стратегических решений.
В последние годы значение теории игр существенно возросло во многих областях экономических и социальных наук. В экономике она применима не только для решения общехозяйственных задач, но и для анализа стратегических проблем предприятий, разработок организационных структур и систем стимулирования.
Эти методы проникли и в управленческую практику. Вполне вероятно, что теория игр наряду с теориями трансакционных издержек и “патрон – агент” будет восприниматься как наиболее экономически обоснованный элемент теории организации. Следует отметить, что уже в 80-х годах М. Портер ввел в обиход некоторые ключевые понятия теории, в частности такие, как “стратегический ход” и “игрок”. Правда, эксплицитный анализ, связанный с концепцией равновесия, в этом случае еще отсутствовал.
Основные положения теории игр
Ознакомимся с основными понятиями теории игр. Математическая и экономическая модель конфликтной ситуации называется игрой, стороны, участвующие в конфликте — игроками. Чтобы описать игру, необходимо сначала выявить ее участников (игроков). Это условие легко выполнимо, когда речь идет об обычных играх типа шахмат и т.п.
Иначе обстоит дело с «рыночными играми». Здесь не всегда просто распознать всех игроков, т.е. действующих или потенциальных конкурентов. Практика показывает, что не обязательно идентифицировать всех игроков, надо обнаружить наиболее важных. Игры охватывают, как правило, несколько периодов, в течение которых игроки предпринимают последовательные или одновременные действия.
Выбор и осуществление одного из предусмотренных правилами действий называется ходом игрока. Ходы могут быть личными и случайными.
Личный ход — это сознательный выбор игроком одного из возможных действий (например, ход в шахматной игре) [9,c.2].
Случайный ход — это случайно выбранное действие (например, выбор карты из перетасованной колоды). Действия могут быть связаны с ценами, объемами продаж, затратами на научные исследования и разработки и т.д. Периоды, в течение которых игроки делают свои ходы, называются этапами игры. Выбранные на каждом этапе ходы в конечном счете определяют «платежи» (выигрыш или убыток) каждого игрока, которые могут выражаться в материальных ценностях или деньгах. Еще одним понятием данной теории является стратегия игрока.
Стратегией игрока называется совокупность правил, определяющих выбор его действия при каждом личном ходе в зависимости от сложившейся ситуации. Обычно в процессе игры при каждом личном ходе игрок делает выбор в зависимости от конкретной ситуации. Однако в принципе возможно, что все решения приняты игроком заранее (в ответ на любую сложившуюся ситуацию). Это означает, что игрок выбрал определённую стратегию, которая может быть задана в виде списка правил или программы. (Так можно осуществить игру с помощью ЭВМ).
Иначе говоря, под стратегией понимаются возможные действия, позволяющие игроку на каждом этапе игры выбирать из определенного количества альтернативных вариантов такой ход, который представляется ему «лучшим ответом» на действия других игроков. Относительно концепции стратегии следует заметить, что игрок определяет свои действия не только для этапов, которых фактически достигла конкретная игра, но и для всех ситуаций, включая и те, которые могут и не возникнуть в ходе данной игры. Игра называется парной, если в ней участвуют два игрока, и множественной, если число игроков больше двух [9,c.3].
Для каждой формализованной игры вводятся правила, т.е. система условий, определяющая:
1) варианты действий игроков;
2) объём информации каждого игрока о поведении партнёров;
3) выигрыш, к которому приводит каждая совокупность действий.
Как правило, выигрыш (или проигрыш) может быть задан количественно; например, можно оценить проигрыш нулём, выигрыш — единицей, а ничью — ½. Игра называется игрой с нулевой суммой, или антагонистической, если выигрыш одного из игроков равен проигрышу другого, т. е. для полного задания игры достаточно указать величину одного из них. Если обозначить а — выигрыш одного из игроков, b — выигрыш другого, то для игры с нулевой суммой b = -а, поэтому достаточно рассматривать, например а.
Игра называется конечной, если у каждого игрока имеется конечное число стратегий, и бесконечной — в противном случае. Для того чтобы решить игру, или найти решение игры, следует для каждого игрока выбрать стратегию, которая удовлетворяет условию оптимальности, т.е. один из игроков должен получать максимальный выигрыш, когда второй придерживается своей стратегии. В то же время второй игрок должен иметь минимальный проигрыш, если первый придерживается своей стратегии.
Такие стратегии называются оптимальными. Оптимальные стратегии должны также удовлетворять условию устойчивости, т. е. любому из игроков должно быть невыгодно отказаться от своей стратегии в этой игре. Если игра повторяется достаточно много раз, то игроков может интересовать не выигрыш и проигрыш в каждой конкретной партии, а средний выигрыш (проигрыш) во всех партиях. Целью теории игр является определение оптимальной
стратегии для каждого игрока. При выборе оптимальной стратегии естественно предполагать, что оба игрока ведут себя разумно с точки зрения своих интересов.
Типы теории игр
Существуют различные виды теории игр:
-кооперативные и некооперативные;
Игра называется кооперативной, или коалиционной, если игроки могут объединяться в группы, беря на себя некоторые обязательства перед другими игроками и координируя свои действия. Этим она отличается от некооперативных игр, в которых каждый обязан играть за себя. Развлекательные игры редко являются кооперативными, однако такие механизмы нередки в повседневной жизни [2,c.76].
Часто предполагают, что кооперативные игры отличаются именно возможностью общения игроков друг с другом. В общем случае это неверно. Существуют игры, где коммуникация разрешена, но игроки преследуют личные цели, и наоборот.
Из двух типов игр, некооперативные описывают ситуации в мельчайших деталях и выдают более точные результаты. Кооперативные рассматривают процесс игры в целом.
Гибридные игры включают в себя элементы кооперативных и некооперативных игр. Например, игроки могут образовывать группы, но игра будет вестись в некооперативном стиле. Это значит, что каждый игрок будет преследовать интересы своей группы, вместе с тем стараясь достичь личной выгоды.
-симметричные и несимметричные ( таблица 1);
Игра будет симметричной тогда, когда соответствующие стратегии у игроков будут равны, то есть иметь одинаковые платежи. Иначе говоря, если игроки могут поменяться местами и при этом их выигрыши за одни и те же ходы не изменятся. Многие изучаемые игры для двух игроков — симметричные. В частности, таковыми являются: «Дилемма заключённого», «Охота на оленя». В примере справа игра на первый взгляд может показаться симметричной из-за похожих стратегий, но это не так — ведь выигрыш второго игрока при профилях стратегий (А, А) и (Б, Б) будет больше, чем у первого.
Таблица 1- Несимметричная игра [9,c.5]
-с нулевой суммой и с ненулевой суммой ( таблица 2);
Игры с нулевой суммой — особая разновидность игр с постоянной суммой, то есть таких, где игроки не могут увеличить или уменьшить имеющиеся ресурсы, или фонд игры. В этом случае сумма всех выигрышей равна сумме всех проигрышей при любом ходе. Посмотрите направо — числа означают платежи игрокам — и их сумма в каждой клетке равна нулю. Примерами таких игр может служить покер, где один выигрывает все ставки других; реверси, где захватываются фишки противника; либо банальное воровство.
Многие изучаемые математиками игры, в том числе уже упоминавшаяся «Дилемма заключённого», иного рода: в играх с ненулевой суммой выигрыш какого-то игрока не обязательно означает проигрыш другого, и наоборот. Исход такой игры может быть меньше или больше нуля. Такие игры могут быть преобразованы к нулевой сумме — это делается введением фиктивного игрока, который «присваивает себе» излишек или восполняет недостаток средств.
Ещё игрой с отличной от нуля суммой является торговля, где каждый участник извлекает выгоду. Сюда также относятся шашки и шахматы; в двух последних игрок может превратить свою рядовую фигуру в более сильную, получив преимущество. Во всех этих случаях сумма игры увеличивается.
Таблица 2 — Игра с нулевой суммой [9,c.6]
Широко известным примером, где она уменьшается, является война.
Игра с нулевой суммой
— с полной или неполной информацией;
Важное подмножество последовательных игр составляют игры с полной информацией. В такой игре участники знают все ходы, сделанные до текущего момента, равно как и возможные стратегии противников, что позволяет им в некоторой степени предсказать последующее развитие игры. Полная информация не доступна в параллельных играх, так как в них неизвестны текущие ходы противников. Большинство изучаемых в математике игр — с неполной информацией. Например, вся «соль» Дилеммы заключённого заключается в её неполноте.
Форма представления игры
В теории игр наряду с классификацией игр огромную роль играет форма представления игры. Обычно выделяют нормальную, или матричную форму и развернутую, заданную в виде дерева. Чтобы установить первую связь со сферой управления, игру можно описать следующим образом. Два предприятия, производящие однородную продукцию, стоят перед выбором.
В одном случае они могут закрепиться на рынке благодаря установлению высокой цены, которая обеспечит им среднюю картельную прибыль ПK. При вступлении в жесткую конкурентную борьбу оба получают прибыль ПW. Если один из конкурентов устанавливает высокую цену, а второй — низкую, то последний реализует монопольную прибыль ПM, другой же несет убытки ПG. Подобная ситуация может, например, возникнуть когда обе фирмы должны объявить свою цену, которая впоследствии не может быть пересмотрена.
При отсутствии жестких условий обоим предприятиям выгодно назначить низкую цену. Стратегия «низкой цены» является доминирующей для любой фирмы: вне зависимости от того, какую цену выбирает конкурирующая фирма, самой всегда предпочтительней устанавливать низкую цену. Но в таком случае перед фирмами возникает дилемма, так как прибыль ПK (которая для обоих игроков выше, чем прибыль ПW) не достигается.
Стратегическая комбинация «низкие цены/низкие цены» с соответствующими платежами представляет собой равновесие Нэша, при котором ни одному из игроков невыгодно сепаратно отходить от выбранной стратегии. Подобная концепция равновесия является принципиальной при разрешении стратегических ситуаций, но при определенных обстоятельствах она все же требует усовершенствования.
Что касается указанной выше дилеммы, то ее разрешение зависит, в частности, от оригинальности ходов игроков. Если предприятие имеет возможность пересмотреть свои стратегические переменные (в данном случае цену), то может быть найдено кооперативное решение проблемы даже без жесткого договора между игроками. Интуиция подсказывает, что при многократных контактах игроков появляются возможности добиться приемлемой «компенсации». Так, при известных обстоятельствах нецелесообразно стремиться к краткосрочным высоким прибылям путем ценового демпинга, если в дальнейшем может возникнуть «война цен».
Предоставление игры в нормальной форме в обычном случае отражает «синхронность». Однако это не означает «одновременность» событий, а указывает на то, что выбор стратегии игроком осуществляется в условиях неведения о выборе стратегии соперником. При развернутой форме такая ситуация выражается через овальное пространство (информационное поле). При отсутствии этого пространства игровая ситуация приобретает иной характер: сначала решение должен бы принимать один игрок, а другой мог бы делать это вслед за ним.
3 Проблемы практического применения теории игр
Следует, однако, указать и на наличие определенных границ применения аналитического инструментария теории игр. В следующих случаях он может быть использован лишь при условии получения дополнительной информации.
Во-первых, это тот случай, когда у предприятий сложились разные представления об игре, в которой они участвуют, или когда они недостаточно информированы о возможностях друг друга. Например, может иметь место неясная информация о платежах конкурента (структуре издержек). Если неполнотой характеризуется не слишком сложная информация, то можно оперировать сопоставлением подобных случаев с учетом определенных различий [5,c. 93].
Во-вторых, теорию игр трудно применять при множестве ситуаций равновесия. Эта проблема может возникнуть даже в ходе простых игр с одновременным выбором стратегических решений.
В-третьих, если ситуация принятия стратегических решений очень сложна, то игроки часто не могут выбрать лучшие для себя варианты. Легко представить более сложную ситуацию проникновения на рынок, чем та, которая рассмотрена выше. Например, на рынок в разные сроки могут вступить несколько предприятий или реакция уже действующих там предприятий может оказаться более сложной, нежели быть агрессивной или дружественной.
Экспериментально доказано, что при расширении игры до десяти и более этапов игроки уже не в состоянии пользоваться соответствующими алгоритмами и продолжать игру с равновесными стратегиями. Отнюдь не бесспорно и принципиальное, лежащее в основе теории игр предположение о так называемом “общем знании”.
Оно гласит: игра со всеми правилами известна игрокам и каждый из них знает, что все игроки осведомлены о том, что известно остальным партнерам по игре. И такое положение сохраняется до конца игры. Но чтобы предприятие в конкретном случае приняло предпочтительное для себя решение, данное условие требуется не всегда.
Для этого часто достаточны менее жесткие предпосылки, например “взаимное знание” или “рационализируемые стратегии”. В заключение следует особо подчеркнуть, что теория игр является очень сложной областью знания. При обращении к ней надо соблюдать известную осторожность и четко знать границы применения. Слишком простые толкования, принимаемые фирмой самостоятельно или с помощью консультантов, таят в себе скрытую опасность.
Анализ и консультации на основе теории игр из-за их сложности рекомендуются лишь для особо важных проблемных областей. Опыт фирм показывает, что использование соответствующего инструментария предпочтительно при принятии однократных, принципиально важных плановых стратегических решений, в том числе при подготовке крупных кооперационных договоров.
Дата добавления: 2018-09-22 ; просмотров: 1624 ; Мы поможем в написании вашей работы!
Источник: studopedia.net
33.Использование теории игр в практике менеджмента
ТЕОРИЯ ИГР. Одна из важнейших переменных, от которой зависит успех организации, — конкурентоспособность. Очевидно, способность прогнозировать действия конкурентов означает преимущество для любой организации. ТЕОРИЯ ИГР — метод моделирования оценки воздействия принятого решения на конкурентов.
В бизнесе игровые модели используются для прогнозирования реакции конкурентов на изменение цен, новые кампании поддержки сбыта, предложения дополнительного обслуживания, модификацию и освоение новой продукции. Если, например, с помощью теории игр руководство устанавливает, что при повышении цен конкуренты не сделают того же, оно, вероятно, должно отказаться от этого шага, чтобы не попасть в невыгодное положение в конкурентной борьбе. Теория игр полезна, когда требуется определить наиболее важные и требующие учета факторы в ситуации принятия решений в условиях конкурентной борьбы. Эта информация важна, поскольку позволяет руководству учесть дополнительные переменные или факторы, могущие повлиять на ситуацию, и тем самым повышает эффективность решения.
34.Факторы оказывающие влияние на процесс принятия управленческих решений
Поскольку принятие решений зависит как от личности ЛПР и его психологических особенностей, так и от объективных условий, в которых он находится, все факторы, влияющие на этот процесс, можно разделить на две большие группы — личностные (субъективные) и ситуационные (объективные). Личностные факторы определяются своеобразием психических процессов, состояний и качеств ЛПР, влияющих на процесс принятия решений.
Поэтому их можно представить в виде трех уровней, соответствующих традиционной психической структуре личности. К ним относятся психические процессы, психические состояния и психические свойства. ПСИХИЧЕСКИЕ ПРОЦЕССЫ. Психические процессы обычно разделяют на три основных вида: познавательные, волевые и эмоциональные.
Наиболее важную роль среди них в процессе принятия решений играют познавательные, или когнитивные, процессы, к которым относят ощущение, восприятие, память, мышление, представление, воображение и внимание. Кроме того, в отдельную группу можно выделить мотивационные процессы, которые предопределяют направленность, интересы, предпочтения, притязания личности и влияют на формирование целей деятельности человека.
ПСИХИЧЕСКИЕ СОСТОЯНИЯ. В современной психологии под психическим состоянием понимается целостная реакция личности на внешние и внутренние стимулы, направленная на достижение некоторого полезного результата. Психические состояния зависят как от конкретной ситуации, в которой находится человек, так и от его индивидуальных психологических особенностей. ПСИХИЧЕСКИЕ СВОЙСТВА.
Всю совокупность психических свойств, или качеств, можно разделить на два класса: общие и индивидуальные. К общим свойствам относятся наиболее типичные и фундаментальные особенности психики, присущие всем людям, и прежде всего, ограничения индивидуальных возможностей по хранению и переработке информации.
Так же к индивидуальным свойствам относятся предпочтений и уровень притязаний личности. Под системой предпочтений понимают совокупность взглядов, ценностей, убеждений, интересов. Уровень притязаний личности характеризует стремление человека к достижению целей такой степени сложности, на которую он сам считает себя способным. Ситуационные факторы.
Принятие решений зависит не только от психологических особенностей ЛПР, но также от ситуационных факторов, т.е. конкретных обстоятельств, в которых принимается управленческое решение. Эта группа включает в себя факторы внешней и внутренней среды организации, которые влияют на разработку, оценивание, выбор и реализацию альтернатив. Рассмотрим их более подробно. ВНЕШНЯЯ СРЕДА.
Можно выделить две составляющие внешней среды, по-разному влияющие на деятельность организации и принятие управленческих решений. Они носят названия макроокружение и непосредственное окружение (или деловая среда) организации. Макроокружение включает факторы, оказывающие опосредованное влияние на организацию.
К ним относятся экономические условия, политика, право, социокультурные, технологические, природно-географические факторы. Деловая среда включает такие внешние факторы, которые оказывают на организацию наиболее сильное и непосредственное влияние.
К ним обычно относят потребителей продукции и услуг, поставщиков материальных и природных ресурсов, конкурентов, инфраструктуру, государственные и муниципальные организации, международный сектор. ВНУТРЕННЯЯ СРЕДА. В процессе принятия управленческих решений любой руководитель вынужден учитывать не только внешние факторы, но и ситуацию, сложившуюся внутри организации. Эта ситуация характеризуется набором внутренних факторов, или переменных, которые включают цели, структуру, культуру, процессы и ресурсы организации.
Источник: studfile.net
IV Международная студенческая научная конференция Студенческий научный форум — 2012
Использование теории игр в практике принятия управленческих решений
Работа в формате PDF
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF
Предисловие
Задача данной статьи заключается в ознакомлении читателя с базовыми понятиями теории игр. Из статьи читатель узнает, что из себя представляет теория игр, рассмотрит краткую историю теории игр, познакомится с основными положениями теории игр, включая основные типы игр и формы их представления. В статье будет затронута классическая задача и фундаментальная проблема теории игр. Заключительный раздел статьи посвящен рассмотрению проблем применения теории игр для принятии управленческих решений и практического применения теории игр в управлении.
Введение.
21 век. Век информации, бурно развивающихся информационных технологий, инноваций и технологических новшеств. Но почему именно век информации? Почему информация играет ключевую роль практически во всех процессах, происходящих в обществе? Все очень просто.
Информация даёт нам бесценное время, а в некоторых случаях даже возможность его опередить. Ведь ни для кого не секрет, что в жизни часто приходится сталкиваться с задачами, в которых необходимо принимать решения в условиях неопределённости, в условиях отсутствия информации об ответных реакциях на твои действия т. е. возникают ситуации, в которых две (или более) стороны преследуют различные цели, а результаты любого действия каждой из сторон зависят от мероприятий партнёра.
Такие ситуации возникают каждый день. Например, при игре в шахматы, шашки, домино и так далее. Несмотря на то, что игры носят в основном развлекательный характер, по природе своей они относятся к конфликтным ситуациям, в которых конфликт уже заложен в цели игры — выигрыш одного из партнёров. При этом, результат каждого хода игрока зависит от ответного хода противника.
В экономике конфликтные ситуации встречаются очень часто и имеют разнообразный характер, а количество их настолько велико, что невозможно подсчитать все конфликтные ситуации, возникающие на рынке хотя бы за один день. К конфликтным ситуациям в экономике относятся, например, взаимоотношения между поставщиком и потребителем, покупателем и продавцом, банком и клиентом.
Во всех вышеперечисленных примерах конфликтная ситуация порождается различием интересов партнёров и стремлением каждого из них принимать оптимальные решения, которые реализуют поставленные цели в наибольшей степени. При этом каждому приходится считаться не только со своими целями, но и с целями партнёра, и учитывать неизвестные заранее решения, которые эти партнёры будут принимать. Для грамотного решения задач в конфликтных ситуациях необходимы научно обоснованные методы. Такие методы разработаны математической теорией конфликтных ситуаций, которая носит название теории игр.
Что такое теория игр?
Теория игр представляет из себя сложное многоаспектное понятие, поэтому представляется невозможным привести толкование теории игр, используя лишь одно определение. Рассмотрим три подхода к определению теории игр.
1.Теория игр — математический метод изучения оптимальных стратегий в играх. Под игрой понимается процесс, в котором участвуют две и более сторон, ведущих борьбу за реализацию своих интересов. Каждая из сторон имеет свою цель и использует некоторую стратегию, которая может вести к выигрышу или проигрышу — в зависимости от поведения других игроков. Теория игр помогает выбрать лучшие стратегии с учётом представлений о других участниках, их ресурсах и их возможных поступках.
2.Теория игр — это раздел прикладной математики, точнее — исследования операций. Чаще всего методы теории игр находят применение в экономике, чуть реже в других общественных науках — социологии, политологии, психологии, этике и других. Начиная с 1970-х годов её взяли на вооружение биологи для исследования поведения животных и теории эволюции. Очень важное значение теория игр имеет для искусственного интеллекта и кибернетики.
3.Одна из важнейших переменных, от которой зависит успех организации — конкурентоспособность. Очевидно, способность прогнозировать действия конкурентов означает преимущество для любой организации. Теория игр — метод моделирования оценки воздействия принятого решения на конкурентов.
История теории игр
Оптимальные решения или стратегии в математическом моделировании предлагались ещё в XVIII в. Задачи производства и ценообразования в условиях олигополии, которые стали позже хрестоматийными примерами теории игр, рассматривались в XIX в. А. Курно и Ж.Бертраном. В начале XX в. Э.Ласкер, Э.Цермело, Э.Борель выдвигают идею математической теории конфликта интересов.
Математическая теория игр берёт своё начало из неоклассической экономики. Впервые математические аспекты и приложения теории были изложены в классической книге 1944 года Джона фон Неймана и Оскара Моргенштерна «Теория игр и экономическое поведение».
Джон Нэш после окончания Политехнического института Карнеги с двумя дипломами — бакалавра и магистра — поступил в Принстонский университет, где посещал лекции Джона фон Неймана. В своих трудах Нэш разработал принципы «управленческой динамики». Первые концепции теории игр анализировали антагонистические игры, когда есть проигравшие и выигравшие за их счет игроки.
Нэш разрабатывает методы анализа, в которых все участники или выигрывают, или терпят поражение. Эти ситуации получили названия «равновесие по Нэшу», или «некооперативное равновесие», в ситуации стороны используют оптимальную стратегию, что и приводит к созданию устойчивого равновесия. Игрокам выгодно сохранять это равновесие, так как любое изменение ухудшит их положение.
Эти работы Нэша сделали серьезный вклад в развитие теории игр, были пересмотрены математические инструменты экономического моделирования. Джон Нэш показывает, что классический подход к конкуренции А.Смита, когда каждый сам за себя, неоптимален. Более оптимальны стратегии, когда каждый старается сделать лучше для себя, делая лучше для других. В 1949 году Джон Нэш пишет диссертацию по теории игр, через 45 лет он получает Нобелевскую премию по экономике.
Хотя теория игр первоначально и рассматривала экономические модели вплоть до 1950-х она оставалась формальной теорией в рамках математики. Но уже с 1950-х гг. начинаются попытки применить методы теории игр не только в экономике, но в биологии, кибернетике, технике, антропологии. Во время Второй мировой войны и сразу после нее теорией игр серьезно заинтересовались военные, которые увидели в ней мощный аппарат для исследования стратегических решений.
В 1960 — 1970 гг. интерес к теории игр угасает, несмотря на значительные математические результаты, полученные к тому времени. С середины 1980-х гг. начинается активное практическое использование теории игр, особенно в экономике и менеджменте. За последние 20 — 30 лет значение теории игр и интерес значительно растет, некоторые направления современной экономической теории невозможно изложить без применения теории игр.
Большим вкладом в применение теории игр стала работа Томаса Шеллинга, нобелевского лауреата по экономике 2005 г. «Стратегия конфликта». Т.Шеллинг рассматривает различные «стратегии» поведения участников конфликта. Эти стратегии совпадают с тактиками управления конфликтами и принципами анализа конфликтов в конфликтологии и в управлении конфликтами в организации.
Основные положения теории игр
Ознакомимся с основными понятиями теории игр. Математическая модель конфликтной ситуации называется игрой, стороны, участвующие в конфликте — игроками . Чтобы описать игру, необходимо сначала выявить ее участников (игроков). Это условие легко выполнимо, когда речь идет об обычных играх типа шахмат и т.п. Иначе обстоит дело с «рыночными играми».
Здесь не всегда просто распознать всех игроков, т.е. действующих или потенциальных конкурентов. Практика показывает, что не обязательно идентифицировать всех игроков, надо обнаружить наиболее важных. Игры охватывают, как правило, несколько периодов, в течение которых игроки предпринимают последовательные или одновременные действия.
Выбор и осуществление одного из предусмотренных правилами действий называется ходом игрока. Ходы могут быть личными и случайными. Личный ход — это сознательный выбор игроком одного из возможных действий (например, ход в шахматной игре). Случайный ход — это случайно выбранное действие (например, выбор карты из перетасованной колоды).
Действия могут быть связаны с ценами, объемами продаж, затратами на научные исследования и разработки и т.д. Периоды, в течение которых игроки делают свои ходы, называются этапами игры. Выбранные на каждом этапе ходы в конечном счете определяют «платежи» (выигрыш или убыток) каждого игрока, которые могут выражаться в материальных ценностях или деньгах.
Еще одним понятием данной теории является стратегия игрока. Стратегией игрока называется совокупность правил, определяющих выбор его действия при каждом личном ходе в зависимости от сложившейся ситуации. Обычно в процессе игры при каждом личном ходе игрок делает выбор в зависимости от конкретной ситуации.
Однако в принципе возможно, что все решения приняты игроком заранее (в ответ на любую сложившуюся ситуацию). Это означает, что игрок выбрал определённую стратегию, которая может быть задана в виде списка правил или программы. (Так можно осуществить игру с помощью ЭВМ).
Иначе говоря, под стратегией понимаются возможные действия, позволяющие игроку на каждом этапе игры выбирать из определенного количества альтернативных вариантов такой ход, который представляется ему «лучшим ответом» на действия других игроков. Относительно концепции стратегии следует заметить, что игрок определяет свои действия не только для этапов, которых фактически достигла конкретная игра, но и для всех ситуаций, включая и те, которые могут и не возникнуть в ходе данной игры.
Игра называется парной, если в ней участвуют два игрока, и множественной, если число игроков больше двух. Для каждой формализованной игры вводятся правила, т.е. система условий, определяющая: 1) варианты действий игроков; 2) объём информации каждого игрока о поведении партнёров; 3) выигрыш, к которому приводит каждая совокупность действий.
Как правило, выигрыш (или проигрыш) может быть задан количественно; например, можно оценить проигрыш нулём, выигрыш — единицей, а ничью — ½. Игра называется игрой с нулевой суммой, или антагонистической, если выигрыш одного из игроков равен проигрышу другого, т. е. для полного задания игры достаточно указать величину одного из них. Если обозначить а — выигрыш одного из игроков, b — выигрыш другого, то для игры с нулевой суммой b = -а, поэтому достаточно рассматривать, например а.
Игра называется конечной, если у каждого игрока имеется конечное число стратегий, и бесконечной — в противном случае. Для того чтобы решить игру, или найти решение игры, следует для каждого игрока выбрать стратегию, которая удовлетворяет условию оптимальности, т.е. один из игроков должен получать максимальный выигрыш, когда второй придерживается своей стратегии.
В то же время второй игрок должен иметь минимальный проигрыш, если первый придерживается своей стратегии. Такие стратегии называются оптимальными. Оптимальные стратегии должны также удовлетворять условию устойчивости, т. е. любому из игроков должно быть невыгодно отказаться от своей стратегии в этой игре.
Если игра повторяется достаточно много раз, то игроков может интересовать не выигрыш и проигрыш в каждой конкретной партии, а средний выигрыш (проигрыш) во всех партиях. Целью теории игр является определение оптимальной стратегии для каждого игрока. При выборе оптимальной стратегии естественно предполагать, что оба игрока ведут себя разумно с точки зрения своих интересов.
Кооперативные и некооперативные
Игра называется кооперативной, или коалиционной, если игроки могут объединяться в группы, беря на себя некоторые обязательства перед другими игроками и координируя свои действия. Этим она отличается от некооперативных игр, в которых каждый обязан играть за себя. Развлекательные игры редко являются кооперативными, однако такие механизмы нередки в повседневной жизни.
Часто предполагают, что кооперативные игры отличаются именно возможностью общения игроков друг с другом. В общем случае это неверно. Существуют игры, где коммуникация разрешена, но игроки преследуют личные цели, и наоборот.
Из двух типов игр, некооперативные описывают ситуации в мельчайших деталях и выдают более точные результаты. Кооперативные рассматривают процесс игры в целом.
Гибридные игры включают в себя элементы кооперативных и некооперативных игр. Например, игроки могут образовывать группы, но игра будет вестись в некооперативном стиле. Это значит, что каждый игрок будет преследовать интересы своей группы, вместе с тем стараясь достичь личной выгоды.
Источник: scienceforum.ru