В конце 2021 года компания Foundry провела исследование о важности инвестирования в данные и аналитику. 88% опрошенных ИТ-директоров считают, что в ближайшие 3 года данные и бизнес-аналитика коренным образом изменят способы ведения бизнеса. 49% участников исследования ставят целью улучшить внутренние бизнес-процессы, 47% — усилить вовлеченность клиентов, 45% — повысить уровень клиентского сервиса.
Почему отдачу от бизнес-аналитики не принято оценивать
По разным источникам, только 40% проектов в области автоматизации бизнес-аналитики оказываются успешными. Но и для них практически никогда не приводят количественных оценок полученных выгод. Даже если совокупный эффект однозначно ощутим, его сложно «оцифровать». Например, как перевести в денежный эквивалент такой результат как повышение качества управленческих решений?
В результате многие заказчики выбирают путь наименьшего сопротивления — считать априори, что предсказать отдачу от бизнес-аналитики невозможно.
Как посчитать пользу от бизнес-аналитики
В кризис необоснованные инвестиции — непозволительная роскошь. Поэтому перед стартом проекта важно подготовить количественный прогноз отдачи от инвестиций в систему бизнес-аналитики. Эта информация поможет без розовых очков оценить целесообразность внедрения аналитического ПО.
Как устроиться Бизнес-аналитиком? Что нужно знать
RB.RU готовит большое обновление — и мы хотим учесть пожелания и интересы вас, наших читателей. Если вы готовы поделиться своим мнением об RB.RU, переходите по ссылке, чтобы заполнить короткую анкету.
С этой целью мы адаптировали методику TEI (Total Economic Impact) применительно к банковским аналитическим системам для расчета потенциальной экономической пользы от их внедрения. Чтобы ее рассчитать, нужно сопоставить все расходы, связанные с внедрением ПО, с преимуществами, которые оно приносит.
Расходы складываются из стоимости приобретения лицензии и услуг по внедрению ПО, а также затрат на его сопровождение. Преимущества — полученная экономия, т. е. оцифрованные выгоды от использования системы.
Определив расходы и выгоды, можно вычислить такие показатели эффективности проекта как индекс рентабельности инвестиций, внутренняя норма доходности, дисконтированный период окупаемости, чистый дисконтированный доход и т. п.
Заметим, что наш подход к оценке окупаемости инвестиций в систему бизнес-аналитики может быть использован для любого ПО этого класса. Например, в некоторых проектах по требованию заказчиков для части задач мы в комплексе с программными компонентами платформы «Контур» используем стороннее ПО — open-source платформу Pentaha ETL для сбора данных.
Если же потребуется оценить экономическую пользу от внедрения другого класса ПО, методику придется заново адаптировать. К счастью, исходная методика TEI универсальна, так что это не должно представлять значительных сложностей.
Как перевести выгоды в денежный эквивалент: примеры из практики
Итак, наиболее сложный момент — получение количественной оценки выгод.
Как пройти собеседование, если ты Junior Business Analyst / Советы к интервью на Бизнес Аналитика
Для этого мы разработали каталог из нескольких десятков метрик, замеряемых до и после проекта внедрения системы бизнес-аналитики.
Например, для расчета экономического эффекта в проектах по автоматизации управленческой отчетности на основе корпоративного хранилища данных мы оцениваем, как за счет сокращения трудоемкости сбора, консолидации и выверки данных повысится производительность труда специалистов.
Из опыта: более 30% экономии обеспечивается за счет сокращения времени расчета отчетных показателей, еще около 30% дает уменьшение трудозатрат на подготовку аналитических расшифровок и детализаций, более чем на четверть снижаются затраты на согласования отчетных показателей и исправление ошибок.
В итоге экономия на одном цикле подготовки управленческих отчетов в детальной аналитике (в разрезе центров финансовой ответственности, точек продаж, продуктов, продуктовых сегментов, клиентов, клиентских групп, проектов, сотрудников и т. п.), с учетом трансфертной стоимости ресурсов и поправок на перераспределения косвенных расходов может достигать нескольких млн руб., а внутренняя норма доходности составит около 20-40%.
Такой проект окупается в среднем за 3-4 года.
Автоматизация позволяет увеличить частоту подготовки отчетов, например, перейти от ежеквартальной/ежемесячной отчетности к ежедневной без дополнительных затрат. В этом случае потенциальная экономия может достигать уже десятка млн руб. Индекс рентабельности инвестиций увеличится в 5 и более раз, внутренняя норма доходности — в 8 раз, а дисконтированный период окупаемости составит менее 2 лет.
Читайте по теме:
Другой пример: одной из метрик для оценки выгоды от внедрения системы бюджетирования может выступать время, затрачиваемое на формирование планов в сметообразующих подразделениях и на их выверку и консолидацию в финансовых службах.
Как показывает практика, в среднем оно сокращается как минимум в два раза. Индекс рентабельности инвестиций в проектах автоматизации хозяйственного бюджетирования составляет 120%, внутренняя норма доходности — 70-80%, а сроки окупаемости — до года.
В заключении добавим, что в системах бизнес-аналитики заложен большой потенциал для будущего развития, и выгоды от их использования заказчики могут наращивать постепенно.
Вернемся, например, к первому кейсу — оценке выгод, которые дает автоматизация управленческой отчетности. Как показывает опыт, период окупаемости для подготовки каждого следующего отчета сокращается в среднем в два раза за счет повторного использования в нем данных, уже собранных в систему бизнес-аналитики.
Резюме
Переводя ожидания заказчиков в понятные им измеримые экономические бизнес-выгоды, можно повысить их заинтересованность в системе.
Заинтересованные заказчики, как известно, с большей вероятностью мотивируют своих сотрудников — будущих пользователей — к активному участию в проекте, и риск, что система встретит внутреннее сопротивление, что нередко случается на практике, будет минимизирован.
Фото на обложке: Shutterstock / GoodStudio
Источник: rb.ru
Не работай «в стол»: руководство для эффективного аналитика
Привет, Хабр! Меня зовут Денис, я работаю продуктовым аналитиком в Delivery Club. Наша команда за последние полгода провела около сотни продуктовых исследований данных, которые способствовали появлению нескольких десятков продуктовых гипотез по улучшению нашего продукта. За это время мы структурировали процесс и минимизировали работу «в стол». Я расскажу об основных этапах исследования, применив которые вы можете значительно улучшить качество своей работы.
Зачем бизнесу аналитические исследования?
Я думаю, что практически каждый, кто пытался найти вакансии аналитика данных, так или иначе видел в описании фразу «поиск точек роста» или «решать проблемы бизнеса». И вроде бы всем понятно, что это и зачем нужно, но при первом столкновении с задачей исследования данных многие молодые специалисты испытывают трудности. Под аналитическим исследованием я понимаю
сбор данных, их глубокий анализ и представление выводов, понятных заказчикам.
Это могут быть совершенно разные задачи: от понимания, почему в определенный день был всплеск метрики, до точного прогнозирования показателей бизнеса. У всех них одна понятная цель: помочь бизнесу найти оптимальное решение задачи, используя собранные данные. Этапы работы, про которые я расскажу дальше, подходят к большинству подобных задач.
Алгоритм действий
Этап первый: проблематика
Это самый важный этап. В первую очередь вам нужно встретиться с заказчиком и задать ему простые вопросы:
- «Почему это нужно и важно?»
- «Какую проблему пользователя или бизнеса это решает?»
- «Из-за чего эта проблема могла возникнуть?»
- «Что ты хочешь получить в результате исследования?»
и так далее, в зависимости от задачи. Лучше, если это будет личная встреча или разговор. Чем больше у вас гипотез на руках, тем проще определиться с дальнейшими шагами.
Польза этапа и в том, что если заказчик не может вам ответить на эти вопросы, то велика вероятность, что проблема может подождать или отсутствует вовсе.
Проанализируйте полученную информацию и ответьте теперь себе на вопросы:
- Важнее ли эта проблема всего остального, чем вы занимаетесь сейчас?
- Что компания сможет сделать с результатами вашего исследования?
- Действительно ли необходимо крупное исследование, или можно ограничиться небольшим ad hoc-исследованием?
Следующий важный шаг — запишите основные мысли по поводу проблемы в отдельную заметку. Не доверяйте своей памяти и поверьте, что вы ещё не раз вернëтесь к этим записям, чтобы напомнить себе о конечной цели. Мне обычно хватает простой заметки в блокноте, но можно и схемку нарисовать для более масштабных проблем.
Представьте, что у вас повысилась нагрузка на Call Center, бизнес просит найти причины и предложить решение. Пример схемы:
Без выполнения этого этапа вся дальнейшая работа может быть проделана впустую, и не потому, что она будет плохой, нет, просто она может быть про другое. Нечëткая постановка задачи — одна из самых распространëнных ошибок. А ещё точное понимание масштаба проблемы помогает лучше планировать время на еë исследование:
Масштаб проблемы
Длительность
Разовое падение метрики.
Несколько часов на быстрое исследование.
Метрика падает несколько дней.
Несколько дней на точное исследование.
Всë ещë падает, ничего не помогает.
Максимум времени, привлекаем всех ответственных, подробно исследуем проблему.
Ещё раз повторюсь, это самый важный этап: одна эта встреча может сэкономить вам часы размышлений или целые дни кропотливой работы.
Этап второй: планирование
Часто случается, что уже во время обсуждения проблемы в голове рождаются идеи, как всë это можно исследовать и какие методы из тех самых статей наконец-то применить на практике. Тут важно не переборщить, а для этого вам нужен план, и вы будете его придерживаться.
Проводить большие, точные исследования круто; ещë круче, когда они приносят пользу бизнесу. А как они могут принести пользу, если вы делаете их месяц или целый квартал?
Потратьте время на подробное планирование своей будущей работы. Список пунктов, которые вы хотите проверить, уже должен быть у вас после общения с заказчиками, и напротив них запишите, как вы это будете делать, какими методами и в какие сроки. Некоторые простые методы анализа разберëм чуть позже; если же сомневаетесь в том, с какой стороны подойти к проблеме, то посоветуйтесь с коллегами-аналитиками или своим руководителем. К большинству бизнес-проблем уже есть проработанные подходы, так называемые best practices, начните с них.
План может состоять из нескольких блоков:
Аналитики при планировании часто не учитывают пункты «Подготовка» и «Выводы», и это большая ошибка. Посидеть и подумать до начала анализа и после — не менее важные этапы, чем сам анализ. Про это тоже поговорим чуть позже.
Этап второй с хвостиком: итерации
Этот пункт немного не вписывается в последовательность действий, но он столь же важен. Запланируйте время для дополнительных итераций работы над исследованием. Под итерациями я понимаю повторный анализ после первых полученных результатов, их обсуждение с заказчиками и декомпозицию.
Когда вы тщательно исследуете какую-то проблему, при планировании сложно учесть сразу все нюансы, особенно если ранее вы не работали с нужными данными и методами. После того, как вы проверите данные, проанализируете их и сделаете выводы, обязательно появятся новые вопросы, захочется проверить новые гипотезы. Вместо того, чтобы сразу приступать к этому, лучше запишите их, чтобы обсудить с заказчиками.
В любых исследованиях, особенно крупных, нужно несколько итераций. Их количество должно быть строго ограничено, не стоит весь год посвящать исследованию одной метрики. Каждая последующая итерация должна занимать минимум в два раза меньше времени, чем предыдущая, потому что:
- уже не нужно выгружать и проверять свои данные, вы должны знать их вдоль и поперёк;
- у вас уже есть список вопросов, на которые надо ответить;
- и, скорее всего, вы понимаете, как на них ответить.
Лично мне дополнительные итерации работы над исследованиями нравятся даже больше, чем первый подход, потому что возвращаешься к задаче как к чему-то знакомому, это значительно облегчает восприятие предстоящей работы и ускоряет её выполнение.
Этап третий: исследование
Вернёмся к нашей последовательности действий. Если вы добросовестно отнеслись и выполнили первые два пункта, то исследование уже не должно вам казаться большим и непонятным. Вы точно знаете проблемы, которые исследуете, почему они важны и, самое главное, как будете всё это проверять. Осталось выполнить простые пункты вашего плана в нужной последовательности. Здесь хочу посоветовать несколько основных действий:
- тщательно проверяйте данные;
- не усложняйте;
- сомневайтесь.
Разберëм каждый пункт по порядку.
Данные — основа любого исследования. В любом курсе по анализу данных вас будут учить, что в первую очередь нужно проверить их качество. Посмотрите на срезы выгружаемых данных с помощью вашего запроса, нет ли там пропусков, все ли типы верны, есть ли часовые пояса в датах, уникальны ли ID. К сожалению, этот пункт нельзя автоматизировать, в каждой компании свои правила хранения и обработки данных, и пока с ними не поработаешь, всех подводных камней не узнаешь.
Не стоит усложнять без необходимости. Всегда начинайте с простых методов анализа, зачастую визуализация ваших данных уже может дать хорошие выводы. Большинство задач можно решить проверенными методами: корреляцией, регрессией, конверсионными воронкам, когортным анализом и их комбинациями.
Под сомнением я имею в виду не неуверенность в чём-то, а максимальную дотошность. Видите пик на графике — декомпозируйте. Заметили кратный рост метрики у какой-то определëнной когорты пользователей — сравните её по всем метрикам с остальными. Не бойтесь задавать вопросы и сомневаться в данных. Найденная на раннем этапе ошибка может спасти вас от перерасчëта всего исследования в будущем; а может, это вовсе не ошибка, а та взаимосвязь, которую вы ищете.
Ещё одна моя идея: если вы хотите принести пользу для бизнеса или продукта, то сложность ваших подходов, алгоритмов или статистических методов играет не самую важную роль.
Для нахождения инсайтов гораздо важнее понимать поведение пользователей, цели бизнеса и ключевую пользу продукта. Прокачивайте свой business sense, общаясь с коллегами и пользуясь продуктом. Следите за конкурентами отрасли и их решениями. Хорошего аналитика от обычного отличает не количество методов, которые он знает, а умение правильно их применять.
Пара примеров:
- Задача: хотим улучшить, проверить или понять, почему падает конверсия. Анализ общей воронки будет отличным решением.
Общая идея: идëм от общего к частному. - Строим обычную воронку действий пользователя в приложении.
- Ищем в ней самые «проседающие», по нашему мнению, шаги.
- Разбиваем эти шаги по параметрам, характерным для вашего бизнеса. Это могут быть местоположение, периоды дня, партнëры или типы услуг. Всë, что важно для вашего бизнеса.
- Аналогично разбиваем на пользовательские сегменты: новички, старички, лояльные.
- Также наблюдаем за динамикой этих конверсий по времени, ищем аномалии.
С помощью такого исследования можно, как минимум, найти и подсветить узкие места общей воронки, а как максимум — устранить явные дефекты продукта и понять, до каких реальных конверсий можно вырастить, просто «подтянув» самые худшие случаи хотя бы до среднего.
- У вас должны быть ретроданные, необходимые для расчёта вашей метрики, а также тех метрик, которые могут на неё влиять.
- Нужно понимать, как работают регрессии и что обозначают их параметры, чтобы правильно потом интерпретировать выводы бизнесу.
Этап четвёртый: описание
Исследование готово: вы нашли инсайты, объяснили, как вы их нашли и что они значат. Теперь нужно подвести итоги и описать в одном отчёте. Очень важно переводить все найденные точки роста в понятные бизнесу показатели, вернее, чего он может достичь, если послушает вас. Это может быть выручка, количество пользователей или то, на чём ваш бизнес сейчас сосредоточен. Причём лучше, если вы рассчитаете не мгновенный рост, а перспективу на год или два вперëд.